

第三届先进凝胶材料与软物质国际学术讨论会

The 3rd International Symposium for Advanced Gel Materials & Soft Matters

Jun. 14-17, 2019 Xi'an, China

Conference Handbook

About Shaanxi University of Science and Technology

Shaanxi University of Science and Technology (SUST) located at Wei Yang university zone, beside the beautiful lake of Wei Yang and surrounded by the River Bahe.

Established in Beijing in 1958 as Beijing Institute of Light Industry it was under the administration of State Ministry of Light Industry. The University was the first institution covering educational needs of Chinese light industry. In 1970 The University was renamed to Northwest Institute of Light Industry and moved to Xianyang City in Shaanxi Province. It was in 1978 when it was recognized as one of 88 key universities in China by the State Council. Approved in 2002 by the Ministry of Education, the University acquired its present name - Shaanxi University of Science and Technology - and in 2007, it was moved to the new campus in Xi'an, the capital city of Shaanxi Province.

SUST consists of three campuses and occupies an area of 388.5 Acre. There are about 21,000 students and 1,200 full time academic faculties.

SUST is a large multidisciplinary university with a wide array of programs, departments, and centers in 13 schools. SUST has 3 postdoctoral research stations, 4 first level and 18 second level doctoral degree-granting disciplines, 18 first level and 82 second level master degree-granting disciplines, 58 undergraduate programs spanning engineering, science, management, literature, economics, law, medical science, and art.

Contents:

Introduction of ISAGMSM:	4
Locations:	5
General Schedule:	7
Scientific Program:	8
Opening Ceremony and Plenary Lectures	8
Oral Sessions:	9
Poster Section:	18
Biography of Plenary Speakers:	22
Introduction of the Main Sponsor:	29

Introduction of ISAGMSM:

History of the ISAGMSM

As launched by Institute of Physical and Chemical Research of Japan (RIKEN), Hokkaido University, Institute of Chemistry Chinese Academy of Sciences, Shaanxi University of Science and Technology, Zhejiang University, Xi'an Jiaotong University, Tianjin University of Technology, Zhuhai GuoJia New Material Co. Ltd, the 1st ISAGMSM was successfully held at Beijing in October, 2016. The 2nd ISAGMSM was successfully held at Guiyang in August, 2017. It gathered over 100 experts in gel materials & soft matter to discuss the latest progress in these fields. The symposium also held a special section of polymer condensed state and conjugated polymer & ceremony of Renyuan QIAN's centenary birthday. The 3rd International Symposium for Advanced Gel Materials & Soft Matters (ISAGMSM) is held on Jun. 14-17, 2019.

The organizing committee:

Chairman: Yoshihito Osada, Jian Ping Gong, Jian Zhong Ma **Executive Vice-Chairman:** Jian Xu, Yong Mei Chen

Organizing Committee Members: Li Chen, Jianhua Dong, Tai Sheng Gong, Xin Ping Li, Jin Ma, Haibo Wang, Zi Liang Wu, Ning Zhao, Yongjun Zhang, Qiang Zheng Secretary-general: Jian Hu, Tao Lin Sun, Zi Liang Wu, Hui Jie Zhang Vice Secretary-general: Haibo Wang

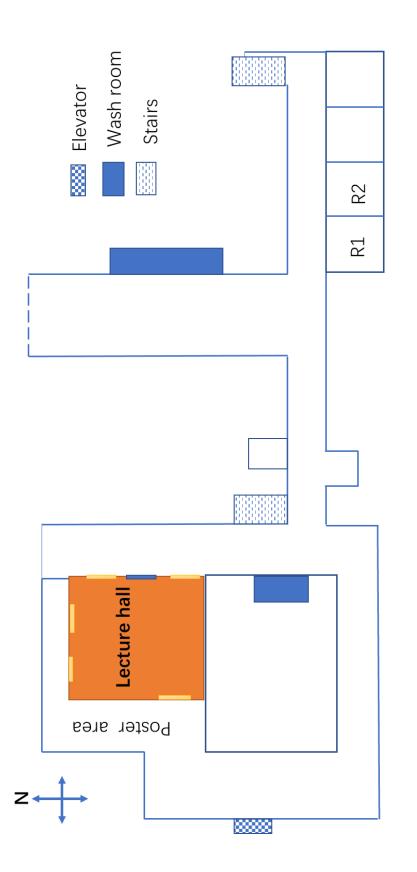
The arrangement committee:

Secretary-general: Taisheng Gong, Xinping Li
Permanent Vice Secretary-general: Bin Lyu
Vice Secretary-general: Yongmei Chen, Wei Xu, Haijian Wang
Secretary: Huijie Zhang, Xing Zhu, Yuehong Zhang, Leipeng Liu, Xiaodan Sun, Jinfan Yang, Yang Wang, Jiaojun Tan, Chuanyin Xiong, Qiusheng Zhou, Ji Li, Jiabo Shi, Qingxin Han, Yan Zong, Xiaoling Wang, Li Ma, Haiwei Wu

Conference Theme:

- 1) Hydrogel
- 2) Org-gel
- 3) Aerogel and porous material
- 4) Hybrid gel material
- 5) Soft matter and smart materials

Locations:



Xi'an Xianglong Grand Hotel

At: Xi'an Xianglong Grand Hotel, Wude Road, Weiyang District, Xi'an Tel: 4008281661;029-68298666

Lecture hall and meeting rooms:

At: The 5th floor of the building for College of Art and Design, Shaanxi University of Science and Technology, Weiyang District, Xi'an

General Schedule:

Date	Time	Content	Venue
Jun. 14 th	08:00-22:00	Registration	Xi'an Xianglong Grand Hotel
Jun. 15 th , 16 th	08:00-08:30	Registration	Outside of Lecture Hall
	08:20-09:00	Opening Ceremony	Lecture Hall
	09:00-09:20	Group Photo	South of Library
	09:20-11:20	Plenary Lectures	Lecture Hall
	11:20-11:30	Coffee Break	Outside of the Lecture Hall
	11:30-12:05	Oral Sections	Meeting Rooms: Lecture Hall R1, R2
	12:05-13:30	Buffet Lunch	Xinyuan Restaurant, 2F
Jun. 15 th	13:30-15:05	Oral Sections	Meeting Rooms: Lecture Hall R1, R2
	15:05-15:35	CoffeeBreak&Poster Section	Outside of the Lecture Hall
	15:35-17:40	Oral Sections	Meeting Rooms: Lecture Hall R1, R2
	17:40-18:25	Introduction of Wiley and sponsors	Lecture Hall
	18:25-20:30	Welcome Party	Xinyuan Restaurant, 2F
	08:30-10:00	Plenary Lectures	Lecture Hall
	10:00-10:30	CoffeeBreak&Poster Section	Outside of the Lecture Hall
	10:30-12:10	Oral Sections	Meeting Rooms: Lecture Hall R1, R2
	12:10-13:30	Buffet Lunch	Xinyuan Restaurant, 2F
	13:30-14:55	Oral Section	Lecture Hall
Jun. 16 th	14:55-15:25	CoffeeBreak&Poster Section	Outside of the Lecture Hall
	15:25-17:05	Oral Section	Lecture Hall
	17:05-18:05	Academic Tour	The Museum of Chinese Light Industry & The University History Museum
	18:05-21:00	Farewell Party	Xinyuan Restaurant, 2F
Jun. 17 th	08:00-22:00	Departure	

Notes:

♦ Plenary Lecture (PL): 30 min;

♦ 3 Parallel Oral Sessions consist of Invited Lectures (IL): 20 min and Oral Lectures (OL): 15 min

♦ The presentation time includes discussion.

 \diamond Please finish the paste of your poster before the first Coffee Break & Poster Section time (15:05 am, Jun. 15th)

Scientific Program:

Opening Ceremony and Plenary Lectures (08:30-10:30, Jun. 15th;

08:30-10:00, Jun. 16 th), Location: Lecture Hall:	08:30-10:00, Ju	un. 16 th), Location	n: Lecture Hall:
---	-----------------	----------------------------------	------------------

Jun. 15 th	Program
08:20-09:00	Opening Ceremony
08:20-09:00	Opening & Welcome Lectures
09:00-09:20	Group photo (Southern side of the Library)
09:20-2	11: 20 Plenary Lectures Chair: Prof. Jian Ping Gong
09:30-10:00	PL 1: Future subjects of gel scienceinspired from biology Prof. Yoshihito Osada ,
07.30-10.00	RIKEN, Japan
	PL 2: Functional hydrogels constructed from natural polymers
10:00-10:30	Prof. Lina Zhang Wuhan University
	PL 3: Low-molecular mass compounds-based gels and gel emulsions: from
10:30-11:00	aerogels to high performance porous monoliths
10.00 11.00	Prof. Yu Fang
	Shaanxi Normal University PL 4: DNA hydrogels
11:00-11:20	Prof. Dan Luo,
	Cornell University, USA
Jun. 16 th	Program
08:30	-10:00 Plenary Lectures Chair: Prof. Yoshihito Osada
	PL 5: Self-growing hydrogels by repetitive mechanical training
08:30-09:00	Prof. Jian Ping Gong,
	Hokkaido University, Japan
09:00-09:30	PL 6: Photo-reactive polymers for medical applications Prof. Yoshihiro Ito ,
07.00-07.30	RIKEN, Japan
	PL 7: Mechanical stability of fiber networks
09:30-10:00	Prof. Miklos Zrinyi
	Semmelweis University, Hungary

Oral Sessions:

Section 1: Hydrogels, Jun. 15th afternoon & Jun. 16th whole day

Oral lecture Time Jun. 15th 11:30-12:05 Chairs: Liming Bian, Xiong Lu Polyampholyte hydrogels with pH modulated shape memory and spontaneous actuation 11:30-11:50 IL 1-1 Zhen Tong South China University of Technology Super-elastic and multifunctional polymer hydrogel strengthened by lowcontent cement-released nanoparticles 11:50-12:05 OL 1-1 Xiao Xu Liang University of Macau Jun. 15th 13:30-15:05 Chairs: Zhen Tong, Dan Luo Hydrogels with ultra-dynamic network enhance mechanosensing-dependent activities of encapsulated stem cells 13:30-13:50 IL 1-2 **Liming Bian** Chinese University of Hong Kong OSA-AM hydrogel with high-strength and faster self-healing property from sodium alginate 13:50-14:05 OL 1-2 Ya Ping Li Hainan University High strength globular protein hydrogels 14:05-14:20 OL 1-3 **Qiang Chen** Henan Polytechnic University Multiple functions of high performance hydrogels enhancement by hydrogen bond OL 1-4 14:20-14:35 **Xue Feng Li** Hubei University of Technology Predictions of thermo-mechanical properties of cross-linked polyacrylamide hydrogels using molecular simulations 14:35-14:50 OL 1-5 Meng An Shaanxi University of Science & Technology Solvent responsive ultra-strong shape memory gels based on hydrophobic association with fantasy applications OL 1-6 14:50-15:05 **Tao Wang** South China University of Technology

Location: Lecture Hall

Jun. 15 th 15:35-18:25 Chairs: Takamasa Sakai, Bao Lin Guo		
15:35-15:55	IL 1-3	Mussel inspired cell/tissue adhesive hydrogels with multi-functions Xiong Lu Southwest Jiaotong University
15:55-16:10	OL 1-7	Electroactive hydrogels: synthesis, characterization and application Zhi Jun Shi Huazhong University of Science and Technology
16:10-16:25	OL 1-8	Highly-tough single-network polysaccharide hydrogel Chao Xi Wu Jinan University
16:25-16:40	OL 1-9	Molecular engineering of metal-coordination interactions for strong, tough and fast-recovery hydrogels Yi Cao Nanjing University
16:40-16:55	OL 1-10	Injectable hydrogel formed by metal–ligand coordination assembly as biomaterials Li Yang Shi Hunan University
16:55-17:10	OL 1-11	Fabrication of chitosan functionalized graphene oxide-embedded nanocomposite hydrogels with enhanced mechanical properties Si Jun Liu Shanghai Jiao Tong University
17:10-17:25	OL 1-12	Freezing-Tolerant gelatin organohydrogels with high mechanical performances, thermoplasticity, and adhesivity Zhi Hui Qin Tianjin University
17:25-17:40	OL 1-13	Electrochemical analysis of bovine serum albumin imprinting CaAlg based composite hydrogel sensor Meng Qi Tianjin Polytechnic University
17:40-17:55	From Wiley	Introduction of Wiley Yan Li Wiley
17:55-18:10	From	Release of industrialization demands from Guojia New Materials Co. Ltd
18:10-18:25	sponsors	Introduction of Hefei Puliang Technology Co. Ltd.
	Jun. 16 th	10:30-12:10 Chairs: Xu-Ming Xie, Chuan Liang Feng
10:30-10:50	IL 1-4	Underwater microphones: electric double layers at the electrode-gel Interface Li Tan University of Nebraska-Lincoln

10:50-11:10	IL 1-5	Bioinspired nucleobase-driven adhesive hydrogels with excellent underwater adhesion Guang Hui Gao Changchun University of Technology
11:10-11:25	OL 1-14	Ultrastiff and tough hydrogels with dense and robust hydrogen bond complexes Zi Liang Wu Zhejiang University
11:25-11:40	OL 1-15	Anisotropic all-cellulose 3D wrinkled hydrogels with programmable patterns for cells alignment Dong Dong Ye Wuyi University
11:40-11:55	OL 1-16	An injectable self-assembling collagen-gold hybrid hydrogel for combinatorial antitumor photothermal/photodynamic therapy Ti Feng Jiao Yanshan University
11:55-12:10	OL 1-17	PAM/CaAlg/CaSiO3@SiO2 composite hydrogel with high strength, good transparency and low swelling under physiological environment Kong Yin Zhao Tianjin Polytechnic University
		Jun. 16 th 13:30-14:55 Chairs: Jian Xu, Li Tan
13:30-13:50	IL 1-5	Creating super tough hydrogels based on multi-bond network (MBN) strategy Xu-Ming Xie Tsinghua University
13:50-14:10	IL 1-6	Thermo-responsive toughening by crack bifurcation in isochoric gels Alba Marcellan, Sorbonne University, ESPCI Paris, France
14:10-14:25	OL 1-18	Multicolor fluorescent polymeric hydrogels: fabrication and sensing/actuating applications Wei Lu Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences
14:25-14:40	OL 1-19	Mechano-responsive, tough and antibacterial zwitterionic hydrogels with controllable drug release for wound healing Rong Wang Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences
14:40-14:55	OL 1-20	Shape memory and injectable hydrogel via the hierarchical physical crosslinks: insights into synergistic effect of block copolymer and hydrogen bonds Jing Chen Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences

Jun. 16 th 15:25-17:05 Chairs : Miklos Zrinyi, Guang Hui Gao		
15:25-15:45	IL 1-7	Bioinspired chiral supramolecular hydrogels Chuan Liang Feng Shanghai Jiaotong University
15:45-16:05	IL 1-8	Multifunctional hydrogels for rapid hemostasis and tissue repair Bao Lin Guo Xi'an Jiaotong University
16:05-16:20	OL 1-21	Natural triterpenoid-tailored phosphate: in situ reduction of heavy metals spontaneously to generate electrochemical hybrid gels Yu Xia Gao China Agricultural University
16:20-16:35	OL 1-22	High-strength and self-healing hydrogel based on carboxymethylcellulose Nan Li Qufu Normal University
16:35-16:50	OL 1-23	Ultrastiff and tough supramolecular hydrogels with a dense and robust hydrogen bond network Yan Jie Wang Tianjin Polytechnic University
16:50-17:05	OL 1-24	Alginate-based hydrogel microcapsules for immobilized biocatalysis Xiu Dong Liu Dalian University

Section 2,3,4: Org-gel, Aerogel and Porous Material and Hybrid Gel Material, Jun. 15th afternoon & Jun. 16th morning

Time		Oral lecture	
	Jun. 15 th 11:30-12:05 Chairs: Tetsuharu Narita, Zi Liang Wu		
11:30-11:50	IL 2-1	Highly plasticized PVC gel with smart functions electrical, optical, mechanical Toshihiro Hirai Shinshu University	
11:50-12:05	OL 2-1	Natural triterpene-tailored supramolecular gels: chiral transfer and amplification Jun Hu Beijing University of Chemical Technology	
	Jun. 15 th	13:30-15:05 Chairs: Toshihiro Hirai, Li Dong Zhang	
13:30-13:50	IL 2-2	High frequency dynamics of polymer solutions and gels studied by micro rheology Tetsuharu Narita ESPCI Paris – CNRS – Sorbonne Université	
13:50-14:05	OL 2-2	The "Morse Code" between solvent polarity and morphology flexibility Si Chen Zhejiang University of Technology	
14:05-14:20	OL 2-3	Hierarchical macro porous networks construct by supramolecular chiral self-assembly of POSS core dendrimers Hui Wen He Zhejiang University of Technology	
14:20-14:35	OL 3-1	Nanocellulose based bio-scaffold routed for biomedical applications Arun Saini Shaanxi University of Science and Technology	
14:35-14:50	OL 3-2	Controlled self-assembly of MXene-polymer at liquid/liquid interfaces Shao Wei Shi Beijing University of Chemical Technology	
14:50-15:05	OL 3-3	"Stiff-Soft" binary synergistic aerogels with super flexibility and high thermal insulation performance Jun Yan Zhang Donghua University	
	Jun. 15 th	15:35-17:45 Chairs: Hideyuki Mitomo, Xue Feng Li	
15:35-15:55	IL 4-1	Anisotropic composite gels from liquid crystalline nanosheets	

Location: Meeting room R1

		Nobuyoshi Miyamoto
		Fukuoka Institute of Technology
		Biomimetic shape-transformation of composite hydrogel films
15:55-16:15	IL 4-2	Zhihong Nie
		Fudan University
		Highly porous polymer aerogel film-based triboelectric nanogenerators
16:15-16:30	OL 3-4	Li Ming Fang
		South China University of Technology
		Graphene-crosslinked CNT aerogel for the preparation of elastic porous
16:30-16:45	OL 3-5	polymer composites
		Fei Zhang
		Tianjin University
		The organic acids assisted sol-gel method for preparing functional
16:45-17:00	OL 3-6	aerogels
10000 1000	0200	Xiao Qing Wang
		Zhejiang University
		Mesoporous silica nanoparticles as nanocarriers for controlled pesticide
		release
17:00-17:15	OL 3-7	Li Dong Cao
		The Institute of Plant Protection, Chinese Academy of Agricultural
		Sciences
	OL 4-1	Achieving fracture-resistant composite hydrogels by large energy-
17:15-17:30		dissipative process zones
1/.13-1/.30		Yi Wan Huang
		Hubei University of Technology
		Bio-inspired hydrogel/organogel materials with special adhesion
17:30-17:45	OL 4-2	Xi Yao
		Henan University
	Jun. 16 th	10:30-12:10 Chairs: Nobuyoshi Miyamoto, Jian Hu
		Active gap control of gold nanodots using gels in nanoscale
10:30-10:50	IL 4-3	Hideyuki Mitomo
	11113	Hokkaido University
		Anomalous expansion of clusters in percolation process in diluted system
10:50-11:10	IL 4-4	Takamasa Sakai
		The Uniersity of Tokyo
		Mussel-inspired cellulose nanocomposite tough hydrogels with
		synergistic self-healing, adhesive, and strain-sensitive properties
11:10-11:25	OL 4-3	Chang You Shao
		Beijing Forestry University
		Hollow hydrogel networks for temperature-controlled water fluidics
11:25-11:40	OL 4-4	Li Dong Zhang
		East China Normal University
11:40-11:55	OL 4-5	Deswelling behavior of pNIPAM composite gel consisting of nanosheet

		liquid crystal whose orientation is controlled by asymmetric electric field
		Takumi Inadomi
		Graduate School of Fukuoka Institute of Technology
11:55-12:10	OL 4-6	Strong and tough hydrogels with highly ordered and controllable microstructure Jian Hu
		Xi'an Jiaotong University

Section 5: Soft Matter and Smart Materials, Jun. 15th afternoon &

Jun. 16th morning

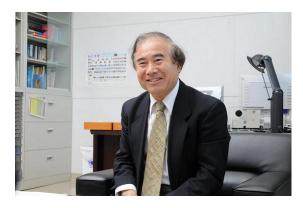
Location: Meeting room R2

Time		Oral lecture	
	Jun. 15 th 10:50-12:05 Chairs: Ryuzo Kawamura, Jun Fu		
11:30-11:50	IL 5-1	Ion-to-Ion amplification through an open junction ionic diode Jeong-Yun Sun Seoul National University	
11:50-12:05	OL 5-1	Structural constructions and multi-functions of biodegradable polyurethanes Feng Luo Sichuan University	
	Jun.	15 th 13:30-14:55 Chairs: Akira Kakugo, Tao Lin Sun	
13:30-13:50	IL 5-2	Active network of motor proteins as artificial dynamic microenvironment for cells Ryuzo Kawamura Saitama University	
13:50-14:10	IL 5-3	Functional modification, controllable fabrication and biomedical applications of natural polymer hydrogel Guang Yang Huazhong University of Science and Technology	
14:10-14:25	OL 5-2	Inducing molecular isomerization assisted by water Dong Sheng Wang University of Electronic Science and Technology of China	
14:25-14:40	OL 5-3	Rational design of UCST polymers as functional materials guided by a thermodynamic map Chuan Zhuang Zhao Ningbo University	
14:40-14:55	OL 5-4	Biocompatible photoluminescent silk fibers with stability and durability Yuan He Xi'an Jiaotong University	
	Jun.	15 th 15:35-17:30 Chairs: Jeong-Yun Sun, Guang Yang	
15:35-15:55	IL 5-4	Ultrastretchable stress and strain sensors based on tough conductive hydrogels Jun Fu Ningbo Institute of Materials Technology and Engineering	

15:55-16:15	IL 5-5	Instabilities in soft materials: from gels to metamaterials Jinxiong Zhou	
15.55-10.15	IL 3-3	Xi'an Jiaotong University	
		From shear-thickening gel to multifunctional anti-impact body armor	
16:15-16:30	OL 5-5	Shou Hu Xuan	
10.15 10.50	OL 5 5	Institute of flexible electronic technology of Tsinghua, Zhejiang	
		A self-healing hydrogel with pressure sensitive photoluminescence for	
		remote force measurement and healing assessment	
16:30-16:45	OL 5-6	Wei Jun Li	
		China University of Petroleum (Beijing)	
		Controlled phase transitions of dipeptide-based gels	
16:45-17:00	OL 5-7	Jin Bo Fei	
		Institute of Chemistry Chinese Academy of Sciences	
		Histidine-based supramolecular π -gel: dynamic self-assembly and	
17:00-17:15	OL 5-8	controlled switching of circularly polarized luminescence	
17.00-17.15	01.3-0	Guanghui Ouyang	
		Institute of Chemistry Chinese Academy of Sciences	
		Biomimetic anisotropic hydrogel actuators	
17:15-17:30	OL 5-9	Jia Wei Zhang	
		Ningbo Institute of Materials Technology & Engineering, Chinese Academy	
		of Sciences	
	Jun. 16th 10:30-12:00 Chairs: Liang-Yin Chu, Jinxiong Zhou		
		Stimuli-Responsive Smart Membranes	
10:30-10:50	IL 5-6	Liang-Yin Chu	
		Sichuan University	
		Construction of molecular swarm robot integrating biomolecular soft	
10:50-11:10	IL 5-7	actuators and processors	
		Akira Kakugo	
		Hokkaido University	
11 10 11 20	н с о	Polysaccharide-based ionic hydrogel	
11:10-11:30	IL 5-8	Kun Yan Sui	
		Qingdao University Bioinspired soft sensing and actuating materials	
11:30-11:45		Xue Min Du	
	OL 5-10	Shenzhen Institutes of Advanced Technology, Chinese Academy of	
		Sciences	
		Hydrophobic hydrogels with fruit-like structure and functions	
11:45-12:00	OL 5-11	Hui Guo	
11110 12100		Sun Yat-sen University	

Poster Section:

No.	Presenter	Affiliation	Poster Title
P 1-1	Ya Chao Li	Donghua University	Investigation of photo-crosslinkable injectable poly(vinyl alcohol) hydrogel for cartilage repair
P 1-2	Li Zhang Chen	Fuzhou University	A highly stretchable conductive polymer hydrogel by freeze-thaw-shrink treatment for flexible electrodes
P 1-3	Bin Chu	Research Institute of Tsinghua University in Shenzhen Training Center	Peptide nanofiber hydrogels to vascularization in skin regeneration
P 1-4	Zi Yang Liu	Suzhou University	Anti-freezing Zwitterionic Poly(ionic liquid) hydrogel-based multimodal artificial skin
P 1-5	Chun Hui Luo	Beifang University of Nationalities	Synthesis and properties of a Tough and multifunctional hydrogel based on grape seed polymer
P 1-6	Wen Jing Ma	Southeast University	Physically cross-Linked hydrogel with toughness, high stretchability, biocompatibility, conductivity, and self-healability
P 1-7	Meng Meng Kang	Southeast University	Reverse Photochromic hydrogel with self-healing property for potential rewritable display application
P 1-8	Xiao Hui Ge	Guangxi University	CO ₂ sensitive self-supporting cellulose hydrogel as food spoilage indicator
P 1-9	Gang Qin	Henan Polytechnic University	Flexible semi-IPN network gel polymer electrolyte for supercapacitor
P 1-10	Jia Yang	Henan Polytechnic University	All-in-one configured stretchable flexible supercapacitor with high strength, excellent self- recovery and self-healing performances
P 1-11	Qi Lin Wang	Henan Polytechnic University	Complex deformation of bilayer hydrogels based on shape memory hydrogel and elastic hydrogel
P 1-12	Shao Ping Lu	Henan Polytechnic University	Hybrid cross-linked natural protein hydrogels with high strength
P 1-13	Shu Rui Yang	South China University of Technology	Body-temperature responsive ultrafast shape memory hydrogel based on natural materials
P 1-14	Xu Fang	Jilin University	One-Step synthesis of healable weak- polyelectrolyte-based hydrogels with high mechanical strength, toughness, and excellent self-recovery
P 1-15	Bo Xu	Jiangnan University	Preparation and properties of nanocomposite hydrogels cross-linked by alumina nanoparticles
P 1-16	Ping Rao	Southern University of Science and Technology	Fast underwater adhesion based on a multi-scale design
P 1-17	Ying Li	Nanjing University of Information Science & Technology	A Highly stretchable, tough and fast self-healing hydrogel based on peptide-metal ion coordination
P 1-18	Lu Qin Hua	Ningbo University	Asymmetric interpenetrating UCST polymer network as multiple-responsive hydrogel actuator
P 1-19	Man Qing Xie	Ningbo University	A shape memory hydrogel with editable permanent shape based on orthogonal supramolecular interactions
P 1-20	Xing Dong Xu	Shandong University	Color-tunable fluorescent supramolecular metallogels constructed by lanthanide (Eu/Tb)


			dependent coordination interaction
P 1-21	Xue Lian Wang	Shaanxi University of Science & Technology	Tough lignin bonded hydrogels with tunable mechanical properties
P 1-22	Chun Lin Liu	Shaanxi University of Science & Technology	Reinforcement of gelatin hydrogel by heat-induced phase separation
P 1-23	Yan Jie Wang	Shanghai Jiao Tong University	Dual physically cross-linked double network hydrogel with high toughness and self-healing capability
P 1-24	Liang Chen	Shihezi University	Control of ice crystal growth and its effect on porous structure of chitosan cryogels
P 1-25	Yan Jun Wang	Sichuan University	N-situ forming thermosensitive polyurethanes-based hydrogel crosslinked by Diels-Alder reaction for 3D cell culture
P 1-26	Xu Dong He	Sichuan Normal University	Shape memory hydrogel based on sodium alginate crosslinked by double networks
P 1-27	Liang Hu	Suzhou University	Highly adhesive and stretchable photothermal hydrogels for preventing postoperative recurrence of cancer
P 1-28	Ze Peng Deng	Tianjin Polytechnic University	Sulfonated MXene nanocomposite hydrogels for self-healing, adhesive and conductive properties
P 1-29	Xiao Juan Ren	Xi'an Shiyou University	Research on gel analyzer based on image processing
P 1-30	Rong Min Wang	Northwest Normal University	Preparation of keratin-based polymer hydrogel with double sensitivity for drug releasing
P 1-31	Ran Wang	Yanshan University	Facile preparation and enhanced stretchable performance of self-assembled polyelectrolytes- based composite hydrogels
P 1-32	Jing Zhang	Zhejiang University of Technology	Tough, antibacterial and antifouling double network hydrogels based on hybrid ionic-covalent crosslinking
P 1-33	Lin Jie Zhou	Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences	Double cross-linking the second network of DN hydrogel for tough sensitive strain and pressure sensors
P 1-34	Jiu Dong Xu	Changchun Institute of Applied Chemistry Chinese Academy of Sciences	Synthesis and swelling properties of superporous anionic hydrogel based polyvinyl alcohol- formaldehyde sponges
P 1-35	Kai Chen	China University of Mining and Technology	Biotribology behavior of UHMWPE grafted with PVA/HA composite hydrogel as artificial cartilage materials
P 1-36	Hong Lei Guo	Sun Yat-sen University	Internal damage evolution in double-network hydrogels studied by microelectrode technique
P 1-37	Si Yu Zheng	Zhejiang University	Programmed deformations of 3D printed tough physical hydrogels with metal-coordination complexes
P 1-38	Chen Yu Li	Zhejiang University	Programmed multi-stable configurations of composite hydrogels with in-plane and through-thickness gradients
P 1-39	Ao Kai Zhang	Changzhou Vocational Institute of Light Industry	Mechanical Property of Polyelectrolyte Networks
P 1-40	Zhang Jing Wen	Shaanxi University of Technology	Dual-PhysicalCross-LinkedToughandPhotoluminescentHydrogelswithGoodBiocompatibility and Antibacterial Activity

P 2-1	Zhi Xing Zhang	Tianjin University	Adhesive, self-healable, and transparent micro-
P 2-2	Hong Wei Zhou	Xi`an Technological	crosslinked organogels as flexible sensor Highly stretchable, electrically conductive and
1 2-2	Trong wer Zhou	University Institute of Chemistry	temperature tolerant ionogels for flexible sensors A shorter alkyl chain dominated self-assembly of
P 2-3	Xue Feng Zhu	Chinese Academy of Sciences	homochiral nanotubes in heterochiral lipid organogels
P 2-4	Juan Li	Central South University	Anti-freezing, non-drying tough organohydrogel with good flexibility and conductivity
P2-5	Kai Qiang Liu	Shaanxi Normal University	Organic or inorganic crystallization in functional molecular gels
P 3-1	Chen Chen Dai	Northeast Forestry University	Oil-water separation, lightweight, flexible and thermally-insulating aerogels derived from wood nanofibrillated cellulose
Р 3-2	Xie Zheng	Donghua University	Preparation and characterization of ultra-fast temperature-responsive nanofibrous hydrogel
P 3-3	Xue Sun	Fuzhou University	Cu/Cu ₂ O/CuO nanoparticles loaded on porous carbon from a novel hypercrosslinked porous polymer for catalytic reduction of 4-Nitrophenol
Р 3-4	Na Zhao	Beijing University	synthesis of leafy-shape TiO_2 -C nanosheets by alkaline treatment of Ti_3C_2Tx MXene
P 3-5	Xing Xiao Li	Beijing University	Removal of perrhenate using radiation synthesized hierarchically macro/mesoporous silica-gratft- quaternary phosphonium
Р 3-6	Yu Feng He	Northwest Normal University	Preparation of feather keratin based polymer spongy aerogel for wound dressings
Р 3-7	Rong Min Wang	Northwest Normal University	Zein-based magnetic polymer aerogel as oil absorbing agent
P 3-8	Wang Liao	Xihua University	Microstructure and mechanical properties of aerogels prepared by freeze casting
P 4-1	Lei Meng	Beijing Forestry University	Ionically cross-linked silk microfibers/alginate tough composite hydrogels with hierarchical structures
P 4-2	Lin Wang	Fujian Agriculture and Forestry University	Effects of zein on the formation of konjac glucomannan electrospun nanofibres for controlled release of curcumin
P 4-3	Yu Feng He	Northwest Normal University	Zein-based composite film with pH-sensitivity for drug controlling release
P 4-4	Bo Tian Li	China University of Petroleum (Beijing)	Synthesis of self-supporting composite nanowires based on 3D-network metallogel template
P 4-5	Dian Dian Dong	Shaanxi University of Technology	Flexible and Lightweight Microcellular RGO@Pebax Composites with Synergistic 3D Conductive Channels and Microcracks for Piezoresistive Sensors
P 5-1	Yong Yuan Ren	Suzhou University	Freeze and heat-resistant, nonflammable and highly robust ionic liquid-based click-ionogels
P 5-2	Yang Yang Gao	Beijing University of Chemical Technology	Molecular dynamics simulation of rupture mechanism in nanofiller filled polymer nanocomposites
P 5-3	Lan Lan Liu	Institute of flexible electronic technology of Tsinghua, Zhejiang	Research and application of implantable blood detection device based on shape memory polymer
Р 5-4	Bai Cheng Zhang	Institute of flexible electronic technology of Tsinghua, Zhejiang	Stretchable resistance sensor based on liquid metal direct writing method
P 5-5	Xiao Xia Le	Ningbo Institute of Materials Technology &	Ionoprinting controlled information storage of fluorescent hydrogel for hierarchical and

		Engineering, Chinese Academy of Sciences	multidimensional decryption
P 5-6	Hai Fei Wang	Shenzhen University	Multifunctional wearable sensors based on repairable and recyclable carbon nanotubes conductive hydrogel
P5-7	Jakia Jannat Keya	Hokkaido University	Autonomous swarming of biomolecular robots utilizing the sequential signaling of DNA

Biography of Plenary Speakers:

Prof. Yoshihito Osada

Professor Yoshihito Osada, an associated member of Japan Academy of Sciences, is one of the pioneer and leader in the science of polymer gels. Already as early as 1975, he developed a chemomechanical gels and later developed it to Artificial Muscle Systems

(AMS) using various functional gels such as Shape Memory Gel, Double Network (DN) Gel and extremely Low Frictional Gel (LFG). His current interests focus to highlyhierarchical protein gels with "emergent" muscle functions, nano-patterning of the gel and electro-conductive gels. Prof. Osada published 300 referred original papers, many monographs and reviews.

He is the Fellow of The Chemical Society of Japan, Honorary Doctor of Polytechnic University of Caltagena, Spain and Visiting Professor of various universities. He is the winner of several awards from The Chemical Society of Japan, The Society of Polymer Science, Japan and others. He played important roles for the science community as a vice-president of The Society of Polymer Science, Japan and as a various committee members of the government. Prof. Osada obtained his Bachelor's degree in chemistry from Waseda University, Japan in 1966 and received his Ph.D in polymer science from Moscow State University under supervision of Prof. V.A. Kabanov in 1971. He was an associate professor in 1973, professor in 1982 at Ibaraki University. He was invited as a professor from Hokkaido University, Sapporo in 1992, served as a Dean of Graduate School of Science, and then as the Vice President of Hokkaido University till 2007. He was invited from RIKEN in 2007, served as a Deputy Director of RIKEN Advanced Science Institute, Group Director and Unit Leader till 2012. He is currently Senior Visiting Scientist at RIKEN and a professor-Emeritus, Hokkaido University.

Prof. Lina Zhang

Lina Zhang (female) is an Academician of Chinese Academy of Sciences, and Professor at Wuhan University, She was voted academician of Chinese Academy of Sciences in 2011, and Fellow of the Royal Society of Chemistry in 2014. She serves as an Associate Editor for ACS Sustainable Chemistry & Engineering as well as the Editorial board members for journals of Cellulose, Bioactive Carbohydrates and Dietary Fibre, and Journal of Applied Polymer

Science etc. She established the Natural Polymers and Polymer Physics group in 1993. Since then, she has been devoting herself to the fundamental research and application on natural polymers. Her research interests include "green" conversions of natural polymers, chain conformation of polymer in solution, fabrication and applications of environmentally friendly materials, relationship of structure to properties of nanomaterials. Professor Zhang pioneered the development of low temperature technologies to dissolve the most intransigent macromolecules such as cellulose, chitin and polyaniline (PANI) in alkali/urea aqueous solvents with cooling that are non-toxic, low-cost and "green". A new mechanism of the polymer dissolution at low-temperature through hydrogen-bonding self-assembly among the macromolecules and solvent molecules has been proposed. She has proved these low temperature dissolving technologies and theories have certain university. Moreover, a series of novel functional materials have been constructed directly from the cellulose solution, chitin solution, chitosan solution or PANI/cellulose solution via "green" conversion methods, and their relationship of structure to properties was revealed, demonstrating their potential applications in biomedical materials, energy storage, sewage treatment and textile manufacturing. She has published more than 600 papers in the international journals, and her work has been cited over 18000 cited times. She is also one of the authors of 16 books and over 100 patents. Because of her profound research achievements and illuminating scientific discoveries, she became the first Chinese scientist received Anselm Payne Award of American Chemical Society in 2011. The "Chemistry World" of Royal Society of Chemistry made an exclusive interview for her as the vanguard of China's green chemistry in 2016. She has been also awarded Second-place National Nature Science Prize of China (2012) etc.

Prof. Yu Fang

Fang Yu, born in September 1956, Xi'an, China, got his Ph.D. degree in Polymer Physics Chemistry, Lancaster University, UK.

He now serves as Executive Director of the Chinese Chemical Society, Honorary Chairman of the Shaanxi Chemical Society, Deputy Director of the International Committee of the Chinese Chemical Society, Deputy Director of the Applied Chemistry Committee, editorial board member of Langmuir, Carbohydrate Polymers,

Journal of Physical Chemistry, Imaging Science and Photochemistry Commission. He is also a member of the National Textbook Committee, deputy director of the National Basic Education Experts Working Committee, deputy director of the Chemistry Major Teaching Steering Committee of the Ministry of Education, the head of the National High School Chemistry Curriculum Standards Revision Group. The deputy director of National Key Laboratories of Synthetic and Natural Functional Molecular Chemistry lab, Northwestern University and Applied Surface and Colloid Chemistry lab, Shaanxi Normal University. Director of the Academic Committee of the Shaanxi Key Laboratories of Polymer Physics and Chemistry lab, Northwestern Polytechnical University, and Phytochemistry lab, Baoji University of Arts and Sciences. He is also the member of the Academic Committee of Jiangnan Graphene Research Institute. He has won the title of National Excellent Teacher, Five-One Labor Medal, National Advanced Worker and National Teaching Master.

Professor Fang Yu has been engaged in the research of fluorescent sensitive film materials and molecular gels for a long time. He has presided over more than 30 projects such as 863 goal orientation, major scientific instruments, and national defense 973 projects. He has published more than 200 papers and has been authorized with 28 invention patents. As the program chair researcher, he won 2 first prizes and 1 second prize in Shaanxi Province. Among all his students, one won the National Top 100 Paper Award, four won the Shaanxi Excellent Bo paper Award, and one was selected for the National Bo Xin Project. He is also the chair researcher of an industrial program: The concealed explosive gas phase detector and the drug gas phase detector, which was already put into production.

Prof. Dan Luo

Dan Luo is a Professor in the department of Biological and Environmental Engineering at Cornell University. He is currently also a faculty member in Nanobiotechnology Center, Cornell Center for Materials Research, Biomedical Engineering and New Life Science Initiatives at Cornell. Dr. Luo obtained his BS degree from the University of Science and Technology of China and his

PhD in 1997 from The Ohio State University in Molecular, Cellular, and Developmental Biology. After a postdoctoral training in the School of Chemical Engineering at Cornell, he joined Cornell faculty in 2001.

Dr. Luo currently is an Associate Editor for "Journal of Biomedical Nanotechnology", Editorial Board Member for "Nanomedicine" and also for "Nano Today". Dr. Luo was awarded National Science Foundation's CAREER award in 2006 and Cornell Provost's Award for Distinguished Scholarship in 2007. Dr. Luo was also a recipient of New York State Foundation for Science, Technology and Innovation (NYSTAR) Technology Transfer Incentive Program Award (2005) and NYSTAR Faculty Development Program Award (2007). More recently in 2008, Dr. Luo was awarded the SUNY Chancellor's Award for Excellence in Scholarship and Creative Activities.

Dr. Luo's research interests have focused on using DNA as both a genetic and a generic material for real world applications including biosensing, drug discovery, drug delivery, alternative energy, photonic-electronic devices, etc. Since becoming a faculty member at Cornell in 2001, Dr. Luo has given more than 100 invited talks worldwide.

Prof. Jian Ping Gong

Jian Ping Gong is a distinguished professor of Hokkaido University, Japan. She graduated from Zhejiang University, China, and received Doctor of Engineering at Tokyo Institute of Technology. She joined the faculty at Hokkaido University in 1993. She is focusing on development of novel hydrogels with high mechanical performances, including high strength and toughness, self-healing, shock-absorbing, low surface friction, under water

adhesion and bonding, and the applications of the hydrogels as bio-tissues, including cartilages. She received several awards including Wiley Polymer Science Award (2001), The Award of the Society of Polymer Science, Japan (2006), The Chemical Society of Japan Award (2011), and DSM Materials Sciences Award (2014). She published 361 papers that have been cited for more than 14558 times with h-index 56 (ISI Web of Science).

Prof. Yoshihiro Ito

Yoshihiro Ito received bachelor's, master's and doctoral degrees from Kyoto University, Japan in 1981, 1983 and 1987. He was an associate professor at Kyoto University in 1997, and a visiting scholar at the University of California from 1992 to 1993. He was a professor at Tokushima University in 1999. He was a research leader at the Kanagawa Institute of Technology

in 2002. From 2004, he serves as chief scientist and laboratory director at the Nanomedical Engineering Laboratory of the Institute of Physical Chemistry. Professor Yoshihiro Ito's main research interests include biomaterials, regenerative medicine engineering, bio-fixation technology, functional polymers, etc., and has published many articles in journals, such as Biomaterials. Now he also serves in Editorial board of many internationally journals such as Journal of Biochemistry and Biomacromolecules.

Prof. Miklós Zrínyi

Miklos Zrinyi received his MS degree in chemistry in Loránd Eötvös University, Budapest, Hungary in 1974. Then he joined to the Department of Colloid Science at the same university as Post Graduate Student (1974-1976). He obtained PhD in 1977 and became a Fellow till 1980. He was First Assistant between 1981-1987 and promoted to Associate Professor between 1988-1992 in

the Department of Colloid Science. In 1993 he moved to Department of Physical Chemistry in Budapest University of Technology and Economics as full professor. Between 1994-2007 he was the Head of the Department of Physical Chemistry. Between 2004-2008 he was appointed as Vice-Rector of Budapest University of Technology and Economics. In 2008 he moved to Semmelweis (medical) University. Between 2008 and 2011 he was a professor at Faculty of Pharmacy and in 2011 he moved to Department of Biophysics and Radiation Biology of the same university. In 2011 he founded the Laboratory of and heads it. He published 4 books (in Hungarian), 11 chapters in various books (in English, Japanese and Chinese) more than 270 papers and articles in scientific journals, 6 patents. He has won several awards including Winner of the National Chemical Competition for High School Students in 1996, Alexander von Humbold Fellowship (1991), Albert Szent-Györgyi Award (1999), Canon Award (2000), Jedlik Award (2003).

In 2007 he was elected as Corresponding Member of Hungarian Academy of Sciences, and in 2012 he became as Ordinary Member of Hungarian Academy of Sciences.

Current research interests include colloid science, physical chemistry, biophysics, stimuli responsive gels and physics of biomaterials.

Introduction of the Main Sponsor:

珠海国佳新材股份有限公司(股票代码: 833295)成立于 2003 年,集团坐 落于广东省珠海经济特区---珠海市金湾区三灶科技工业园,是我国第一家专业 从事高分子凝胶核心材料及凝胶芯制品研发、生产与销售的国家级高新技术企业。 其前身是武汉海格尔科技有限公司,成立于 1999 年,是国内第一款退热贴—— 兵兵退热贴的生产商。

公司总部厂区面积 4.65 万平方米, 旗下拥有珠海国佳凝胶研究院、湖北凝胶产 业园、兵兵药业(湖北)、湖北硅金凝节能减排科技有限公司等多个子公司及关联 企业深圳中凝科技有限公司, 分布于珠海、武汉、深圳、杭州、成都等多地。

公司现拥有有效技术专利 60 余项,承担部级以上国家项目 5 项,省市项目 18 项,参加制定国家标准 1 项,行业技术规范 1 项,获得 1 项国家级重大成就、 3 项省市级重大科技成果;国佳新材是"十五"国家重大科技专项 863 课题组长 单位,保水凝胶项目获得国家重大科技成就。国佳新材先后获得武汉市科技进步 二、三等奖、珠海市科技进步二等奖,广东省科技进步三等奖、"国家级高新技 术企业"、"广东省诚信示范企业""AAAA 级中国质量信用企业"及"广东省 自主创新示范企业""珠海市优秀知识产权企业"等多个荣誉称号。

国佳新材以生态健康、节能环保为两大应用产业,已研究生产出以凝胶材料 为核心的一百多个应用型芯制品品规。国佳新材凝胶材料包括 HMG8631、 HMG8632-X 和 HMG8633 三大系列。HMG8631 系列是生产各类凝胶芯制品的核心原 料,打破了凝胶关键材料长期由国外厂商垄断的格局,完美实现国产替代与超越, 高保水凝胶核心技术也成为国佳新材的核心竞争力; HMG8632-X 系列是重金属污 染治理的核心材料; MG8633 系列是高分子凝胶树脂材料。

作为龙头企业的珠海国佳新材股份有限公司在把高分子凝胶应用于生物医 药、化妆品、农林保水等产业化方面已初具规模,并具备一定的产业先机布局和 市场化龙头品牌专业优势。

未来,国佳新材将在保持既有产品优势的基础上,全力打造生态健康和环保 节能两个应用产业及三大凝胶产业链:水凝胶生态健康产业链、气凝胶节能新材 产业链和复合凝胶环保产业链,实现凝胶行业全产业链布局。

雄厚实力插上资本之翼,国佳新材定将一飞冲天!

Main Sponsor:

Co-sponsors:

Room of Committee affairs group: Room 701,Xi'an Xianglong Grand Hotel 会务组房间:西安翔龙大酒店 701 房间

Contact persons:

联系人及电话:

 Yongmei Chen (陈咏梅) TEL: +86-13227788790

 Bin Lyu (吕 斌)
 TEL: +86-029-86168235, +86-13991372196

 Huijie Zhang (张慧洁)
 TEL: +86-15710443286